
34 The Delphi Magazine Issue 67

Under Construction:
VisiBroker 3.3 For
Delphi 5, Part 2
by Bob Swart

Last month, I started my
coverage of the new VisiBroker

3.3 for Delphi 5, which should be
available for purchase by the time
you read this. There were a few
things that I didn’t show last time,
like support for special type
constructs (enums, unions and
sequences) and CORBA callbacks,
that will be on the agenda for this
second article about VisiBroker 3.3
for Delphi 5.

Interface Definitions
The IDL file contains the interface
definition between the CORBA
server and the CORBA clients. Last
month, I constructed a somewhat
artificial IDL file that covered most
of the existing and new features
and enhancements of VisiBroker
3.3 for Delphi 5, except for the
support for sequences and enu-
merated types, which are the topic
of the first half of this article. As an
intermediate language, IDL is
both cross-platform and cross-
language. And yet IDL contains a
lot of expression power, which
means the IDL2xxx native language
compilers (where xxx stands for
your language of choice, such as
C++, Java or, in our case, Pascal)
must be resourceful enough to

translate the IDL structure (see
Listing 1) to a useful ObjectPascal
structure.

Let’s take a look at the interfaces
and types defined in the IDL file.
We already saw the interface Rates
from last time, only this time I’ve
added a method SetRate to allow us
to change the interest rate (which
will be useful for our callbacks
example later in this article). The
Rates interface is followed by a
simple typedef. The enum type
AccountType has two possible
values: normal and saving, to be
used in the union type definition
NormalOrSavingAccount that follows
later. In between these two, I’ve
defined some regular types called
NormalAccount (with only a bal-
ance) and SavingAccount (with a
balance and an interest rate,
obtained from the interface).

Apart from these special types,
we can also define arrays or
sequences (arrays with unspeci-
fied number of items). These can
be found in the AccountArray,
which is an array of three
NormalOrSavingAccount items, and
the AccountSequence, which is an
unspecified sequence of NormalOr-
SavingAccount items.

A question that may have come
up now is ‘how do I pass these
types as arguments?’. Well, I’m

glad you asked, since the last inter-
face Accounts is especially con-
structed to show two methods
that receive AccountArray and
AccountSequence arguments.

IDL2Pas
Enough about the IDL file. Let’s
turn it into server skeletons and
client stubs. Last time, we created
the CORBA server as a console
application (with the CORBA client
as GUI application), and I promised
they would trade places this time,
so we’ll use the IDL file from Listing
1 to create a CORBA server Win-
dows application. This time, the
CORBA server doesn’t end in a
waiting message loop (see last
month’s article), but should be
started in an event handler. The
code generated by IDL2Pas con-
tains a main form with a method
called InitCorba. This method
already contains some example
code to guide us in writing the
correct code to create an instance
of our CORBA server.

In this case, we have two inter-
faces defined (Rates and Accounts),
so we need to add two fields (of
type Rates and Accounts) and
create two CORBA server objects
here. As the comments in the uses
clause of the main form indicate,
we should also (by hand) add the
generated DrBob42_i, DrBob42_c
and DrBob42_impl units to the uses
clause of the interface section.

The modified code of InitCorba
and Unit1 can be seen in Listing 2.

The last remaining step is calling
the InitCorba method when the
form is created (for example, in
the OnCreate event handler, which
also means that we can free the
CORBA objects in the OnDestroy
event handler).

module DrBob42
{
interface Rates
{
float interest_rate();
void SetRate(in float rate);

};
typedef float Money;
enum AccountType
{
normal,
saving

};
struct NormalAccount
{
Money balance;

};
struct SavingAccount
{

Money balance;
Rates rates; // interface

};
union NormalOrSavingAccount switch (AccountType)
{
case normal:
NormalAccount accountN;

case saving:
SavingAccount accountS;

};
const unsigned long ArraySize = 3;
typedef NormalOrSavingAccount AccountArray[ArraySize];
typedef sequence<NormalOrSavingAccount> AccountSequence;
interface Accounts
{
void AccountArrayTest(in AccountArray Accounts);
void AccountSequenceTest(in AccountSequence Accounts);

};
};

➤ Listing 1: New DrBob42.idl.

March 2001 The Delphi Magazine 35

CORBA Client
To test the CORBA server, we need
to create a new project using the
CORBA client application (a handy
tip: put them both in the same pro-
ject group). Last time we made a
CORBA client Windows applica-
tion, so this time I’m showing how
to make a CORBA client console
application. The console applica-
tion should create instances to the
CORBA server Accounts first,
which is done as in Listing 3.

Note the last two source lines (in
comments) that show how we plan
to call the Account.AccountArray
Test and Account.AccountSequence
Test methods. We can find
the definition of the AccountArray
and AccountSequence in the
DrBob42_i.pas interface unit:

AccountArray = array[0..2] of

DrBob42_i.NormalOrSavingAccount;

AccountSequence = array of

DrBob42_i.NormalOrSavingAccount;

As you see, the sequence is similar
to an open array in ObjectPascal. If
we start with the AccountArray, we
need to create an instance of the
TNormalOrSavingAccount union for
every item in the array (ie we need
to do that three times, from 0 to 2).
We then need to actually decide
whether to treat it as a normal or
saving account, but we can’t do
that by assigning something to the
_discriminator field (which is
read-only). Instead, we just have to
either assign a value to the
accountN or to the accountS proper-
ties of the NormalOrSaving Account
item. Assigning a value to either
the accountN or the accountS prop-
erty has a beneficial side-effect: the
_discriminator field is correctly
set as well.

The example source code in
Listing 4 fills the three items in the
AccountArray, making two normal
accounts and one savings account.

Note that the constructor of the
TSavingAccount needs the Rates
interface as the second argument.
But since this is a global CORBA
object anyway, we can just pass
the instance of Rate.

Considering the code in Listing
4, it shouldn’t be much of a sur-
prise that the code for a sequence

looks a bit similar (see Listing 5).
The main difference is that we need
to make a call to SetLength to
initialise the open array.

CORBA Implementation
The AccountArrayTest and Account-
SequenceTest routines in Listings 4
and 5 call the implementation of

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, Corba, DrBob42_i, DrBob42_s, DrBob42_impl;

type
TForm1 = class(TForm)
private
protected
Rate: Rates; // skeleton object
Account: Accounts; // skeleton object
procedure InitCorba;

public
end;

var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.InitCorba;
begin
CorbaInitialize;
// Add CORBA server Code Here
Rate := TRatesSkeleton.Create('Rates', TRates.Create);
BOA.ObjIsReady(Rate as _Object);
Account := TAccountsSkeleton.Create('Accounts', TAccounts.Create);
BOA.ObjIsReady(Account as _Object)

end;
end.

➤ Listing 2: CORBA server initialisation.

➤ Listing 3: CORBA client application.

procedure AccountArrayTest;
var
MyAccounts: AccountArray;

begin
MyAccounts[0] := TNormalOrSavingAccount.Create;
MyAccounts[0].accountN := TNormalAccount.Create(7); // normal
MyAccounts[1] := TNormalOrSavingAccount.Create;
MyAccounts[1].accountN := TNormalAccount.Create(42); // normal
MyAccounts[2] := TNormalOrSavingAccount.Create;
MyAccounts[2].accountS := TSavingAccount.Create(42,Rate); // saving
Account.AccountArrayTest(MyAccounts);

end;

➤ Listing 4: Testing array of accounts.

procedure AccountSequenceTest;
var
MyAccounts: AccountSequence;

begin
SetLength(MyAccounts,2);
MyAccounts[0] := TNormalOrSavingAccount.Create;
MyAccounts[0].accountN := TNormalAccount.Create(7); // normal
MyAccounts[1] := TNormalOrSavingAccount.Create;
MyAccounts[1].accountS := TSavingAccount.Create(42,Rate); // saving
Account.AccountSequenceTest(MyAccounts);

end;

➤ Listing 5: Testing sequence of accounts.

program CClient;
{$APPTYPE CONSOLE}
uses
SysUtils, CORBA,
DrBob42_c in 'DrBob42_c.pas',
DrBob42_i in 'DrBob42_i.pas';

var
Rate: Rates; // skeleton object
Account: Accounts; // skeleton object

begin
CorbaInitialize;
// Add CORBA client Code Here
Rate := TRatesHelper.Bind;
Account := TAccountsHelper.Bind;
// AccountArrayTest;
// AccountSequenceTest;

end.

36 The Delphi Magazine Issue 67

the CORBA server which wasn’t
covered, yet. We’ve seen how to
create instances of argument
types, and now it’s time to focus on
using passed argument types. This
turns out to be very easy: Delphi’s
own Code Insight will help us use
the correct property. The only ‘ad-
vanced’ issue here is the
_discriminator property of the
array or sequence items, which
has a value of either normal or
saving, and based on that value we
can access the accountNor accountS
property.

In short, the code for the CORBA
server implementation is given in
Listing 6. I’m just using simple
ShowMessages to display the
individual items of the array and
sequence.

Note that the example is not
really useful, since all I do is walk
through the array or sequence and
determine what kind of account we
find next, printing only the account
information (for normal accounts)
or the account information

including the current interest rate
(for saving accounts). However, it
might become a bit more
interesting, at least theoretically,
once we realise that we never
called the SetRate method of the
Rates interface, yet. We could call
this method, from the client, if we
want to change the interest rate.
Note that since there is but one
CORBA server Rates object, all the
clients will automatically be
working with the new interest rate
once it has been changed. How-
ever, having the interest rates
change behind your back does not
mean that a client is automatically
notified that the interest rate has
changed, which leads to our last
topic of today...

CORBA Callbacks
So far we’ve seen CORBA servers
that are being called from CORBA
clients. That’s one server with
many clients, with the initiative
always at the client (making a
request), and the server merely
responding to the client. But what
if we had a CORBA server that
needed to inform its clients that

something was changing (say, the
interest rate suddenly got changed
from 4.0 to 4.2 per cent?), or what if
the CORBA server simply had to
contact the CORBA client to obtain
a client-specific interest rate in the
first place? In those cases, we
would need to use CORBA
callbacks to allow the server to
talk to the client instead of the
other way around.

The solution that I’m about to
implement involves the definition
and implementation of the Rates
interface at the client level. We
will do this by modifying the
DrBob42_impl.pas file, taking out
the TRates class definition and
implementation, and placing it in a
file called Rates_impl.pas. This
new file will be included by the
CORBA client, and not by the
CORBA server any more. The easi-
est way to do this is just to copy
the file DrBob42_impl.pas to
Rates_impl.pas, remove all the
TRates from DrBob42_impl.pas
and remove everything but TRates
from Rates_impl.pas, and don’t
forget to change the unit name
inside Rates_impl.pas as well.

unit DrBob42_impl;
{This file was generated on 31 Jan 2001 11:22:44 GMT by
version 03.03.03.C1.06 of the Inprise VisiBroker idl2pas
CORBA IDL compiler.}

{Please do not edit the contents of this file. You should
instead edit and recompile the original IDL which was
located in the file D:\usr\bob\magazine\DELPHI.MAG\#67\
src\drbob42.idl.}

{Delphi Pascal unit : DrBob42_impl
}
{derived from IDL module : DrBob42
}
interface
uses
SysUtils,
CORBA,
DrBob42_i,
DrBob42_c;

type
TRates = class;
TAccounts = class;
TRates = class(TInterfacedObject, DrBob42_i.Rates)
protected
FRate: Single;

public
constructor Create;
function interest_rate: Single;
procedure SetRate (const rate: Single);

end;
TAccounts = class(TInterfacedObject, DrBob42_i.Accounts)
protected
public
constructor Create;
procedure AccountArrayTest(const Accounts:
DrBob42_i.AccountArray);

procedure AccountSequenceTest(const Accounts:
DrBob42_i.AccountSequence);

end;
implementation
constructor TRates.Create;
begin
inherited;
FRate := 1

end;
function TRates.interest_rate: Single;
begin

Result := FRate
end;
procedure TRates.SetRate(const rate: Single);
begin
FRate := rate

end;
constructor TAccounts.Create;
begin
inherited

end;
procedure TAccounts.AccountArrayTest(const Accounts:
DrBob42_i.AccountArray);

var
i: Integer;

begin
writeln('OK');
for i:=0 to 2 do
begin
if Accounts[i]._discriminator = normal then
ShowMessage(Format('Normal Balance %d: %1.2f',
[i+1,Accounts[i].accountN.balance]))

else
ShowMessage(Format('Savings Balance %d: %1.2f at
%1.2f%%', [i+1,Accounts[i].accountS.balance,
Accounts[i].accountS.rates.interest_rate]))

end
end;
procedure TAccounts.AccountSequenceTest(const Accounts:
DrBob42_i.AccountSequence);

var
i: Integer;

begin
for i:=0 to High(Accounts) do // use High on Open Array
begin
if Accounts[i]._discriminator = normal then
ShowMessage(Format('Normal Balance %d: %1.2f',
[i+1,Accounts[i].accountN.balance]))

else
ShowMessage(Format('Savings Balance %d: %1.2f at
%1.2f%%', [i+1,Accounts[i].accountS.balance,
Accounts[i].accountS.rates.interest_rate]))

end
end;
initialization
end.

➤ Listing 6: CORBA server
implementation.

38 The Delphi Magazine Issue 67

After you’ve split the implemen-
tation units, you’ll notice that the
CORBA client still compiles (noth-
ing has changed to break it), but
the CORBA server no longer com-
piles: it doesn’t know the TRates
class type any more, which is
needed to create an instance of the
TRatesSkeleton (see Listing 2 to
refresh your memory). That’s no
big deal, since the CORBA server is
no longer implementing the Rates
anyway, so just remove these two
lines from the CORBA server pro-
ject file (the lines regarding Rates).
In the source code on the disk, I’ve
used a compiler conditional vari-
able called CALLBACK to distinguish
between the original and the
callback version of the project.

Now that the CORBA server
knows nothing about the Rates any
more, let’s put it in the CORBA
client. For this, you need to open
up the CORBA client project, add
the DrBob42_s and Rates_impl units
to the uses clause, and add a few
lines of code (that were removed
from the CORBA server just
a minute ago) inside {$IFDEF
CALLBACK} compiler conditionals,
namely:

Rate := TRatesSkeleton.Create(
‘Rates’, TRates.Create);

BOA.ObjIsReady(
Rate as _Object);

We’re almost done: in case we use
the callback code as shown above,
the CORBA client should not create
the Rate object by calling the
TRatesHelper.Bind (there’s nothing
to bind, the object is already here),
so I have used similar {$IFNDEF
CALLBACK} compiler conditionals to
make sure this code isn’t called
when it’s not needed (see the final
listing).

The rest is already in place: in
both cases we pass the Rates inter-
face as a field member of the
SavingAccount (which is a possible
type of the TNormalOrSavingAccount
type), and the CORBA server will
need to call the Rates interface to
obtain the rates (using the method
interest_rates), which results in a
callback to the client that imple-
mented this server. Presto!

The final implementation of the
callback-enabled CORBA client is
shown in Listing 7.

If you compare Listing 3 to
Listing 7 you will notice a lot of
changes. One is the use of IFDEFs to
change between the original ver-
sion and the callback version of the
code, and another change is the
use of try..except blocks to catch
any CORBA exceptions that may
have been raised by the CORBA
server.

In this article, unlike last month, I
didn’t use any special exceptions,

but we also don’t use try..except
blocks in the CORBA server imple-
mentation (see the code in
DrBob42_impl.pas), so anything
that goes wrong on the CORBA
server that raises an exception will
result in an exception (usually the
BAD OPERATION CORBA exception)
to be raised on the client side.

Next Time
In this article, we’ve seen a CORBA
Windows server application and a
console client application. We
have also experimented with
enumerated types, sequences and
arrays, and played with CORBA
callbacks.

Next time, I’m going a little bit
deeper into the topic of general
interfaces, specifically an interface
called IDataAware, which might just
be a more convenient and easier
way to manage and define data-
aware components in Delphi.

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an IT
Consultant for the Everest Delphi
OplossingsCentrum (DOC) and a
freelance technical author.

program CClient;
{$DEFINE CALLBACK}
{$APPTYPE CONSOLE}
uses
SysUtils, CORBA,
DrBob42_c in 'DrBob42_c.pas',
DrBob42_i in 'DrBob42_i.pas',
DrBob42_s, Rates_impl;

var
Rate: Rates; // skeleton object
Account: Accounts; // skeleton object

procedure AccountArrayTest;
var
MyAccounts: AccountArray;

begin
MyAccounts[0] := TNormalOrSavingAccount.Create;
// normal
MyAccounts[0].accountN := TNormalAccount.Create(7);
MyAccounts[1] := TNormalOrSavingAccount.Create;
// normal
MyAccounts[1].accountN := TNormalAccount.Create(42);
MyAccounts[2] := TNormalOrSavingAccount.Create;
MyAccounts[2].accountS :=
TSavingAccount.Create(42,Rate); // saving

Account.AccountArrayTest(MyAccounts);
end;
proocedure AccountSequenceTest;
var
MyAccounts: AccountSequence;

begin
SetLength(MyAccounts,2);
MyAccounts[0] := TNormalOrSavingAccount.Create;
// normal

MyAccounts[0].accountN := TNormalAccount.Create(7);
MyAccounts[1] := TNormalOrSavingAccount.Create;
MyAccounts[1].accountS :=
TSavingAccount.Create(42,Rate); // saving

Account.AccountSequenceTest(MyAccounts);
end;
var
R: Integer;

begin
CorbaInitialize;

{$IFDEF CALLBACK}
Rate := TRatesSkeleton.Create('Rates', TRates.Create);
BOA.ObjIsReady(Rate as _Object);

{$ENDIF}
write('Rate: ');
readln(R);
try
// Add CORBA client Code Here

{$IFNDEF CALLBACK}
Rate := TRatesHelper.Bind;

{$ENDIF}
Rate.SetRate(R);
Account := TAccountsHelper.Bind;
AccountArrayTest;
AccountSequenceTest;

except
on E: Exception do
writeln(E.Message)

end;
readln;

end.

➤ Listing 7: Callback-enabled CORBA client.

	Interface Definitions
	IDL2Pas
	CORBA Client
	CORBA Implementation
	CORBA Callbacks
	Next Time

